服薬アドヒアランスの現状と 今後の介入

ふたば薬局

目的

薬物療法を行う上で、服薬アドヒアランスは重要な位置づけであると考えられる。

そこで、来局患者の服薬アドヒアランス状況を把握するとともに、影響を及ぼす要因を分析し、薬剤師として介入すべき観点から、今後の方向性を明らかにするため本調査を行った。


服薬アドヒアランススケールの定義

◆客観的な服薬アドヒアランス尺度を調査するため、91日間を調査期間とし、 処方期間との関係から、服薬アドヒアランススケール※を算出した。

服薬アドヒアランススケール: AS(%) = 処方期間/13weeks

※ASを定義するうえでの条件

- ◆次回受診日が予約制ではない医療機関を対象とし、患者は薬が無くなった時点で医療機関を受診すると仮定する。
- ◆早期受診等の理由により、ASが100%を超える症例は、平均ASを大きくしてしまうため、対象除外とする。

方法

◆調査対象症例は、H22.2~3において、ふたば薬局保原店に来局した患者の うち、処方日数毎(14日群、21日群、28日群)の3群に分け、それぞれ100例ずつ 無作為抽出し、合計で300例とした(table.1)。

table.1 調査対象症例

	N	性別(M/F)	年齡
14TD	100	40/60	74.96±12.02
21TD	100	47/53	63.35±12.51
28TD	100	41/59	64.10±12.49

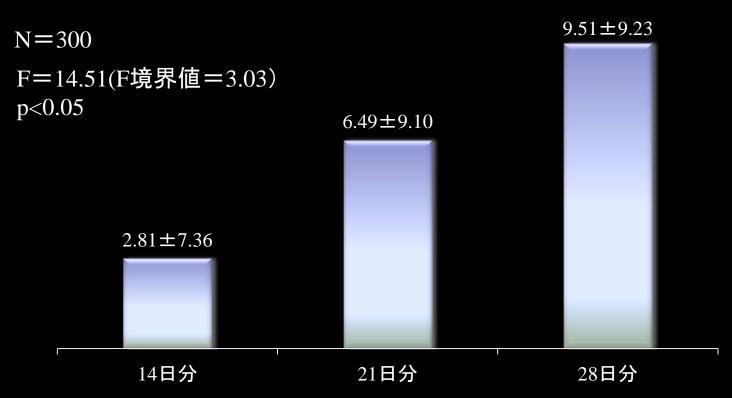
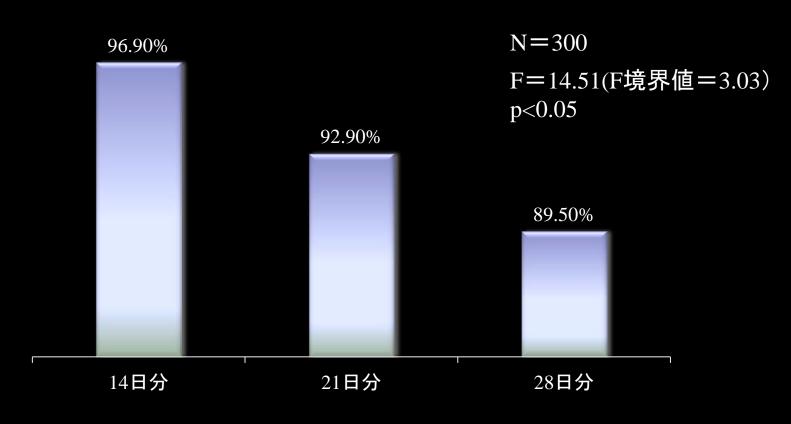

◆AS≥95%をASGood群(ASG群)、AS<95%をASBad群(ASB群)とし、2群間における要因分析をOdds Ratioにより評価した(table.2)。

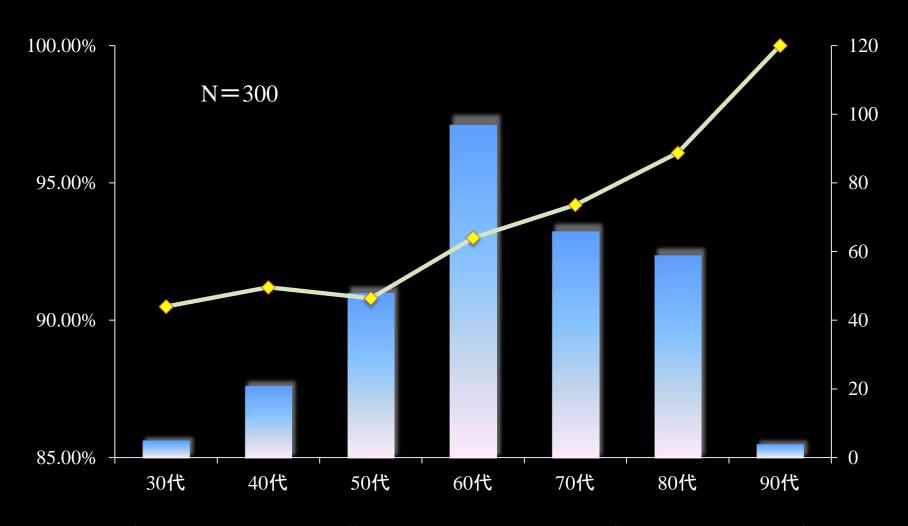
table.2 ASG群とASB群の調査対象症例

	N	性別(M/F)	年齢
ASG群	181	74/107	70.22±12.48
ASB群	119	54/65	63.30±12.53

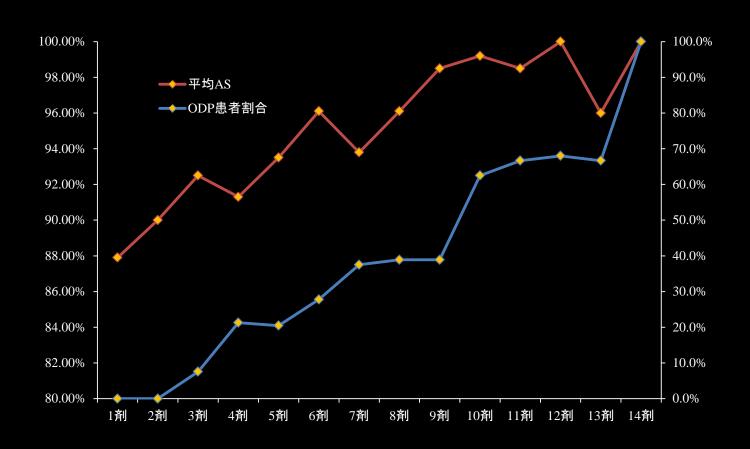

処方日数と飲み忘れ日数

飲み忘れ日数(日)=調査期間(日)-処方期間(日)

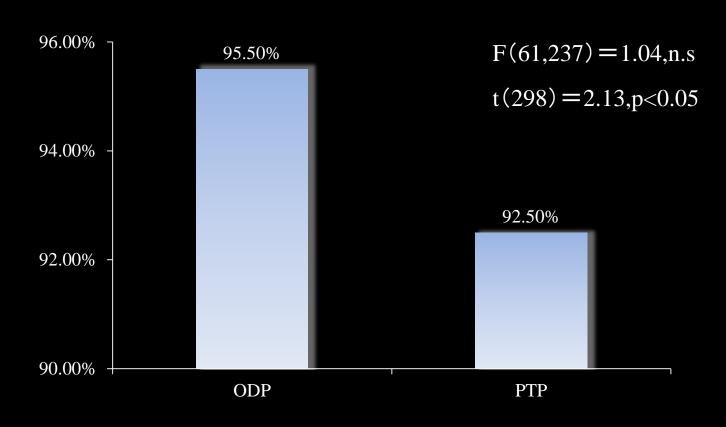
分散分析の結果、処方日数別における平均飲み忘れ日数に有意差がみられた。 処方日数の増加は、飲み忘れ日数を増加させる可能性がある。


処方日数と服薬アドヒアランス

分散分析の結果、処方日数別における平均服薬アドヒアランススケールに有意差がみられた。


処方日数の増加は、服薬アドヒアランススケールを低下させる可能性がある。

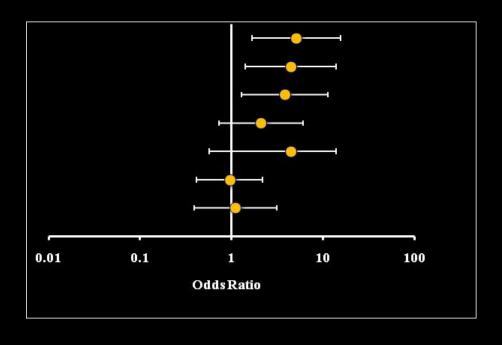
年代と服薬アドヒアランス


年代が増加するにつれ、服薬アドヒアランススケールが増加する可能性がある。

服用剤数と服薬アドヒアランス

剤数が増加するにつれ、服薬アドヒアランススケールが増加する傾向にある。 さらに、剤数が増加するにつれ、ODP調剤による患者の割合も増加していることから、 服薬アドヒアランススケールの増加にODP調剤が関与している可能性があると考えられる。

調剤形式と服薬アドヒアランス



それぞれ等分散であるODP調剤による患者(N=62)とPTP調剤による患者(N=238)の平均ASにおいて、t検定を行ったところ、ODP調剤は、PTP調剤に比べ、有意に服薬アドヒアランススケールを向上させることがわかった。

ASG群における要因分析

table.3 ASG群におけるOdds Ratio

125 C F11 = 00 1, 0 C G G F1 1 C G G G G F1 1 C G G G G G G G G G G G G G G G G G						
要因	OR	Lower limit	Upper limit			
性別(男性)	0.832	0.522	1.328			
年齢(75歳)	3.120	1.801	5.403			
多剤(5剤以上)	2.709	1.671	4.390			
調剤形式(ODP)	3.027	1.560	5.872			
処方日数(14日分)	3.921	2.233	6.884			
服用回数(複数回)	2.822	1.672	4.765			
負担金(2000未満)	1.338	0.834	2.149			

ASG群に影響を与えると考えられる要因をOdds Ratioにより評価した(Table.3)。年齢、多剤、調剤形式、処方日数、服用回数の要因において、それぞれ有意差がみられた(p<0.05)。性別、負担金の要因は、影響が少なかった。特に、年齢、調剤形式、処方日数では、Odds Ratioが3倍以上の結果となった。「非高齢者」・「PTP調剤」・「処方日数の増加」の要因は、服薬アドヒアランスを低下させるリスクがあると考えられる。

飲み忘れ率と年間残薬日数

◆本研究における症例300例を対象として、13weeksの調査期間中に飲み忘れた日数から、1日あたりの飲み忘れる割合として「飲み忘れ率^{※1}」を算出し、理論的に「年間残薬日数」^{※2}を算出した。

飲み忘れ率^{※1}(%)=飲み忘れ日数(日)/13weeks(91日) 年間残薬日数^{※2}(日)=飲み忘れ率(%)×365(日)

- ◆平均飲み忘れ率(%)=6.89% (N=300)
- ◆平均年間残薬日数(日)=25.15±36.83日

300例の「平均飲み忘れ率」、「平均年間残薬日数」は、それぞれ6.89%、25.15±36.83日であった。

服薬アドヒアランスを低下させる要因である「非高齢者」・「PTP調剤」・「処方日数の増加」の要因が含まれた場合、年間残薬日数を増加させるリスクがあると考えられる。

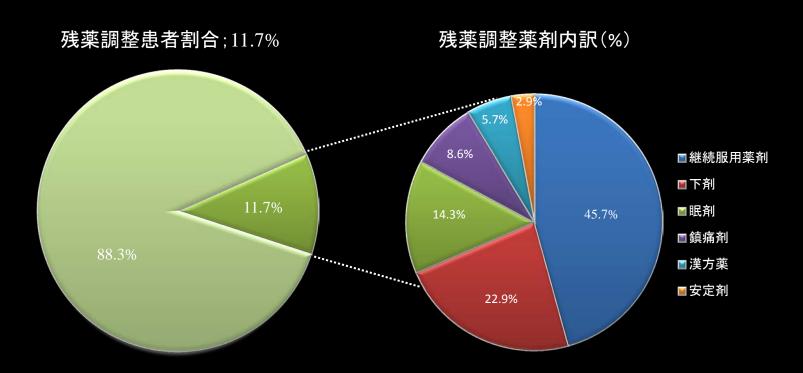
年間残薬料シミュレーション

◆前項で算出した「平均年間残薬日数」と「1日あたりの平均薬剤料※1」の関係から、 「1人あたりの年間残薬薬剤料※2」を算出し、わが国における内分泌、栄養及び代謝疾患、 循環器系疾患外来総患者※3を母集団データとし、年間残薬薬剤料をシミュレーションした。

1日あたりの平均薬剤料※1:薬価ベースとし、外用薬を除いた1日あたりの内服薬薬剤料の平均値と定義 1人あたりの年間残薬薬剤料※2:1日あたりの平均薬剤料×平均年間残薬日数から算出し、中央値を採用

- ◆1日あたりの平均薬剤料=373.09±269.43
- ◆1人あたりの年間残薬薬剤料=9071.17±20746.76(Me=2144.28)
- ◆わが国における年間残薬薬剤料=2144.28×外来総患者数(16830.9千)

外来総患者数 $^{\times 3}$: 高血圧性疾患(7958.3 +)、虚血性心疾患(1280.8 +)、糖尿病(2344.8 +)、脂質異常症 $^{\times 4}(4500 +)$


※3: 平成20年患者調査よりデーター部改変

※4: 平成18年国民健康•栄養調査

□〉理論上、<u>年間約345億円</u>が残薬として存在する

残薬調整患者割合

対象症例300例のうち、調査期間中に1回でも残薬調整を行った実績のある症例の割合は11.7%であった。病院などの予約制医療機関の場合、ASは見かけ上100%に近い値を示すと考えられるが、「長期処方」のリスクを考慮したうえで、本研究のサンプルデータをあてはめた場合、年間で25.15±36.83日分以上に相当する残薬が存在する可能性があるため、患者の残薬状況を把握し、ODP等の調剤技術や疑義照会による残薬調整等の介入が期待される。

考察と今後の介入

- 服薬アドヒアランスが低いと考えられる「長期処方患者」、「非高齢患者」に対する薬物療法への有効的参画の為、 服薬アドヒアランスを高められるようなカウンセリング技術 の検討と調剤技術的な対応が必要であると考えられる。
- 本研究プランニングによる残薬状況は、あくまでも理論値であり、実測値とは異なるが、薬物療法におけるリスクの軽減、医療費抑制等の側面から考慮すると、「残薬把握・調整」に対して、今後、薬剤師の更なる介入が必要であると考えられる。